AUTHORS
Mark E. Rudolph, Monica A. McArthur, Laurence S. Magder, Robin S. Barnes, Wilbur H. Chen, Marcelo B. Sztein
ABSTRACT
Typhoid fever, caused by the pathogen Salmonella enterica serovar Typhi (S. Typhi), is a serious global health concern. Challenge studies with wild type S. Typhi identified associations between gut-homing regulatory T cells (Treg) and development of typhoid disease. Whether oral live-attenuated Ty21a vaccination induces gut-homing Treg remains unclear. Here, we analyze pediatric and adult Treg pre- and post-Ty21a vaccination in an autologous S. Typhi-antigen presentation model to address this knowledge gap. We show that peripheral memory Treg populations change from childhood to adulthood, but not following Ty21a vaccination. Unsupervised dimensionality reduction with t-distributed stochastic neighbor embedding (tSNE) identifies homing, memory, and functional features which evidence age-associated maturation of multifunctional S. Typhi-responsive Treg, which were not impacted by Ty21a vaccination. These findings improve understanding of pediatric regulatory T cells, while identifying age-related differences in S. Typhi-responsive Treg, which may aid in the development of improved pediatric vaccination strategies against S. Typhi.
Click here to view the article, published in Clinical Immunology.