AUTHORS
ABSTRACT
The emerged resistance in Typhoidal Salmonella has limited the treatment options for typhoid fever. In this scenario, there is a need to find alternate treatment modalities against this pathogen. Amongst the therapeutic agents currently being used to treat enteric fever, quinolones have enjoyed considerable success since past three decades. These drugs act upon DNA gyrase and the acquired resistance is due to mutations at Ser83 and Asp87 of gyrase A subunit. In the present study DNA gyrase enzyme was targeted to seek out potential new inhibitors which are not affected by these mutations. Molecular modelling and docking studies were performed in Schrödinger’s molecular modelling software. Homology model of DNA gyrase-DNA complex was built using templates 1AB4 and 3LTN. Molecular dynamic simulations were performed in SPC solvent for 100 ns. Total 17,900,742 drug like molecules were downloaded from ZINC library of chemical compounds. The Glide XP score of the compounds ranged from -5.285 to -13.692. All the ligands bound at the four base pair staggered nick in the DNA binding groove of DNA gyrase enzyme with their aromatic rings intercalating between the bases of two successive nucleotides stabilized by π – π stacking interactions. The binding pocket of DNA gyrase B comprising conserved residues Lys 447, Gly 448, Lys 449, Ile 450, Leu 451, Gln 465 and Val 467 interacts with the ligand molecules through van der Waals interactions. The MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration) and IC50 of the tested compounds ranged from 500 to 125 mg/L, 750 to 500 mg/L and 100 to 12.5 mg/L, respectively. The selected hits bind to quinolone binding pocket, but their mode of binding and conformation is different to fluoroquinolones, and hence, their binding is not affected by mutations at Ser83 or Asp87 positions. These lead compounds can be further explored as a scaffold to design inhibitors against DNA gyrase to bypass quinolone resistance.
Click here to read the article, published in Bioorganic Chemistry.